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Nithin the framework of the model of two coexisting homogeneous porous continua 
the article examines the influence of the state of stress of a material and of 
the liquid pressure on the effective parameters of the continua, and a system 
of equations of filtration is obtained that differs from the known system. 

By fissured and porous material we mean material inwhich there is a developed system 
of interconnected cracks separating blocks of porous medium. The notion of such material 
as two homogeneous porous media, one inserted into the other and each having its porosity 
and permeability, and the corresponding approach to describing filtration processes in it 
were first suggested in [i, 2] and explained in detail in [3]. 

On the basis of a more detailed analysis of the dependence of the structural and me- 
chanical characteristics of fissured and porous material on the state of stress in its 
phases, the present work, using an analogous continual approach, obtains a system of equa- 
tions of filtration in the mentioned porous continua that differs substantially from the 
system of equations obtained in [i-3]. 

For the sake of simplification, the porous medium forming the blocks is assumed to be 
homogeneous and isotropic. Ne consider deformations of the material to be elastic, we 
completely neglect irreversible plastic deformations, and filtration in the material is 
taken to be linear. The dependence of density and viscosity of the liquid on the pressure 
and the dependence of the porosity of the blocks on the stresses in them are assumed to be 
weak, and fissure porosity is assumed to be small compared with unity. 

.State of Stress of the Material and Effective Properties O f porous Continua. First of 
all we will examine the different types of stress acting in fissured and porous material 
filled with liquid. Representing it as composite material consisting of a porous matrix and 
cracks distributed in it, we obtain for the full mean stresses 
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Analogously, the magnitudes o(~) playing the part of full mean stresses in the porous lj 
blocks can be represented in the form of linear combinations of the mean true stresses in 
the hard skeleton frame of the blocks and of the normal stresses in the pores, i.e., 

--- ~ 0 ( 2 )  =~c.!~ (i---~j ~j ~-m~p=8~j. (2) zl 

The mea~ s t resses  i n  the ske le ton  frame per t o t a l  c r o s s - s e c t i o n a l  area of  the porous b lock  

b locks ,  on which on l y  t h e i r  p o r o s i t y  and p e r m e a b i l i t y  have to depend, we ob ta in  from (1) 
and (2) 
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The last approximate equality in (3) corresponds to the previously expressed assumption that 
mx<<l. Taking it that the full stresses oij are not dependent on time (the conditions 
necessary for this in connection with real strata were discussed in [3]), we obtain from 
(3) 

6'o{/ Op~ 0o: Op~ 
o---i- = -- o---f- ~j' --07-- = -- o---7-' (4) 

where o f is the first invariant of the fictitious stress tensor (3). Considering ourselves 
limited by the traditional notions, we neglect hera the possible dependence of porosity and 
permeability of the blocks on other invariants of the tensor o~j, i.e.~ we adopt 

m~ = m~ (p~, of),  k~ = ks (p~, o:/ .  (5) 

We note that the authors of [1-3] did not examine the dependence of these magnitudes 
on o f , on the other hand they considered them dependent on the pressure in the fissures; 
this does not seem very consistent. 

We will discuss briefly the problem of determining the effective permeability tensors 
k: and ka associated with the introduced porous continua in which filtration is expected to 
model the real averaged motion of llquid through fissures and the porous blocks, respec- 
tively. It follows from numerous investigations of the effective properties (thermal con- 
ductivlty, electromagnetic characteristics, viscosity, moduli of elasticity, etc.) of dis- 
perse media and composite materials that the properties of each of the introduced continua 
depend in a complex manner on the corresponding physical characteristics of all the phases 
or components of which the system consists, and also on the type of internal structure of the 
system. This problem is therefore exceedingly complex. For the case that flow through both 
continua is considerable, there does not exist so far any acceptable solution, not even one 
based on the physically justified simplifying assumptions. It is only clear that the tensor 
kx in the general case has to depend not only on the topological properties of the system of 
fissures and on the mean characteristics of one fissure but also on the scalar pearmeability 
of the porous blockska, and the tensor ka has to depend not only on ka but also on the prop- 
erties of the system of fissures. For instance, when there is anisotropy in this system 
(the tensor kx is nonspherical), tensorka, generally speaking, will not be spherical either. 

However, when the fissure porosity of the blocks is small and their permeability is rel- 
atively low, it is apparently permissible to adopt as a fairly reasonable approximation that 
the tensor kl does not differ from the corresponding tensor in material with the same system 
of fissures but with impermeable blocks, and that tensor k2 is spherical with unique eigen- 
value equal to ks. For lack of a better model we will examine below this simple approxima- 
tion. 

Since mx<<l~ a single fissure may be regarded approximately as being in an unbounded 
homogeneous elastic medium whose effective modulus of alasticlty and Poisson ratio are ap- 
proximately equal to the analogous magnitudes E and e of a porous matrix filled with liquld~ 
and in which the stresses olj act (at a distance from the fissure). As representative model 
fissure we regard an oblate ellipsoid of revolution with the semiaxes c and h. On the basis 
of the results of [4] we have for the opening of the crack 

4 (1 - -  eZ)(P' - -  n ' ~ ' n )  Y(p l  - -  n . o . n ) ,  (6 )  h =  - - r  
n E 

where Y(x) is the Heaviside function, and n is the unit vector of t h e  normal to the plane 
of the fissure. The volume of the fissure is proportional to cahj and its hydraulic conduc- 
tivity to h a . Hence follows that the fissure porosity and the components of the tensor of 
fissure permeability depends very strongly both on the liquid pressure in the fissures and 
on the state of stress of the material. In particular it is obvious that the effective fis- 
sure permeability of the materlalp which in the unloaded state was isotroplc from the macro- 
scopicpoint, will be described in the loaded state, generally speaking, by a tensor of rank 
2 whose principal axes coincide with the principal axes of the stress tensor. 

The components of k~ with arbitrary state of stress of the material and known distribu- 
tion function of the fissures according to orientations can be calculated in the following 
manner. In t h e  system there acts the pressure gradient Vp: = --Za iei, where ei is the unit 
vector. In accordance with the Boussinesq--Poiseuille law for a single fissurewith specified 
orientation n. the component of the liquid flow in this fissuret due =o the i-=h componen= 
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Vpl,  i s  p r o p o r t i o n a l  t o  the  v e c t o r  hS(nXa~eOXn, where  h i s  e x p r e s s e d  by f o r m u l a  ( 6 ) .  I f  we 
a v e r a g e  t h i s  v e c t o r  o v e r  t he  d i r e c t i o n s  n u s i n g  t h e  m en t io n ed  d i s t r i b u t i o n  f u n c t i o n ,  we ob-  
t a i n  as  a r e s u l t  some new v e c t o r  a~EC~jej; a l l  i t s  t h r e e  components  a r e  n o n z e r o  In  t h e  gen -  
e r a l  case, and the coefficients Cij are functions of p~ and ok~. It Is clear that wlth an 
accuracy of up to the scaler factor these coefficients coincide with the corresponding com- 
ponents of the tensor of fissure permeability, i.e., k~,i j - AClj. The constant A can be 
most simply determined by using some reference value of permeability. The calculations can 
be easily generallzed to the situation when the fissures are distributed not only according 
to orlentatlonn, but also according to the dimension c. In the special case, when the un- 
loaded material is macroscopically isotroplc, It is expedient to change to the system of 
coordinates connected with the principal axes of the tensors uand k~, and to determine the 
elgenvalues of the tensor kl. 

It Is obvious that If pl is larger than the maximum elgenvalue of the tensor a, all the 
fissures are open, though the degree of their opening is unequal. If p~ is smaller than the 
maximum elgenvalue but larger than the minimum elgenvalue of u, fissures with a certain orl- 
entation are closed and do not take part in the throughflow. If p~ Is smaller than the mini- 
mum elgenvalue of ~, then all cracks are closed, i.e., fissure permeability vanishes alto- 
gether. Therefore fissure permeability can be substantial only wlth falrly hlgh liquid 
pressures within the fissures. Thls explains to a certain extent the known fact that in 
deep-lying oil strata, regarded as fissured or fissured-porous, anomalously high rock pres- 
sures, much higher than the calculated ones, were always found. In fact, wlth low rock 
pressures the fissure permeability In accordancewith the theory submitted here simply could 
not be noticed because the fissures are closed. This may also explain the consistent under- 
estimation of the elastic oll reserved in such strata when standard estlmatlng methods are 
used. As a rule, the cumulative yield is much larger than the preliminarily calculated re- 
serves. 

Thus the dependence of fissure permeability on the state of stress of the material and 
on the liquid pressure in fissures, even for elastic material, Is much more complex, and 
what Is most important, stronger than was usually assumed (see, e.g., [5]). Although the 
calculation of this dependence is simple in principle, it is very cumbersome. To explain 
the principle of the matter concerned, we will examine below, as a fairly simple but charac- 

teristic illustration, filtration in material exposed to hydrostatic pressure with stress c. 
Then for fissure porosity and fissure permeability we have, taking (6) into account, 

p o _  a . - -  a Y (p~ - -  ~)" ( 7 ) 

Formulas (7) also describe the properties of material all of whose cracks are oriented 
in one plane; in that case ~ means compressive stress normal to this plane. 

Equations of Filtration. We write the equations of the balance of liquid in the fls- 
sures and in the porous blocks taking mass exchange between them into account which play the 
part of equations of the conservation of mass for the introduced porous continua, and also 
the corresponding Darcy equations 

O(m~p) +V . (p u , )  = qi,  ui  = - -  1 ki'Vp,, (8) 
at ~ 

q l ~ - - q ~ = q ,  i =  1, 2. 

Since the viscosity and density of a liquid depend weakly on the pressure, we put ~I = 
po and for the flow q per unlt volume of material we use an expression that was suggested 
in [l-3] 

p~ 
q = ~ -~oi2- (P~ - -  Pl)" (9) 

Taking (4) and (5) into account, we obtain by the standard method [3] the following 
equation of elastic filtration regime in porous blocks: 

. . . . . . . . .  (lO) 
. . . .  / op = 

m~ + T ~  ~ = ~ A P ' - - q "  K. k ap ] K~ ,.ap, ad 
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In deriving an analogous equation for filtration in fissures, 
p may be neglected in view of the much stronger dependence of m~ on p. 
taln from (7) and (8) 

=--~-v. f ~ - ~  k~'w~ + q, m,--~- P~ ) P~ 
and this equation has meaning only when p~ > ~. 

Taking (9) into account and introducing the parameters 

o 

S = - - - - ~  - - +  .... , ? = - - - ~ a ,  
tr/2 Kp ]('m, k2 

~• m~/~ ~ K,~ 

we obtain from (i0) and (ii) the system of equations 

= V" pO VP~ + - - ,  s Ot p~ (~ 

Op~ ., ~Ap~ P~ - -  p~ 

Ot 

the dependence of p on 
As a result we oh- 

(11 )  

(12)  

(13) 

If the characteristic changes o f  the pressures p~ and Pa are sufficiently small in com- 
parison with pO_~, and the tensor Y is spherlcal, then we have from (13) approxlmately 

Opl P~ - -  Pl s - -  ?Ap~ + , 
Ot "~ 

Op~ = • P2 -- Pl 
at  T 

(14) 

(the constants s and Y in (14) are different from the constants in (13)). 

Since permeabillty through blocks is usually much smaller than through fissures, i.e., 
x<<y, we may neglect the term with Ape in the second equation of (14). But this, generally 
speaking, cannot be done in the corresponding equation of (13) because with p~ tending to u, 
fissure permeability becomes comparable with permeability through blocks (if, however, we 
are not deallng with fissured material with impermeable blocks), and when p~ < u, it van- 
ishes altogether. In that case, instead of (13) we have an ordinary equation of elastlc 
filtration reglmeonly through blocks with the coefficient of plezoconductlvity x. We note 
that the term with the derivative with respect to time in the first equation of (13) or (14) 
may not be neglected either in the general case because ususally ~ >>1 and Km>> 1, and the 
coefficient s, determined in accordance with (12), may be an order or more larger than unity 
e v e n  when m~<<m~. 

Let us compare (14) with the analogous system suggested in [1-3]. Firstly, in the lat- 
ter equations there is no term with s~p~/St which, as was already shownj must not be ne- 
glected. Secondly, on the left-hand side of the equation for mean pressure in porous 
blocks [1-3] has instead of 8pa/~t the magnitude ~p2/St -- B~p~/St, where ~ is a coefficient 
depending on the properties of the material and of the liquid. This is due to the fact that 
in [1-3] it is postulated that instead of (5), the dependence of m2 and k2 on p~ and P2 be 
used. The properties of the system (14) with • = 0 and of the system from [1-3] are sub- 
stantially different. Specifically, in distinction to the latter systemp for Eqs. (14) the 
initial conditions for both pressures pl and P2 maY be specified. 

If ~ = O, then~ expressing p~ from the second equation of (14) through p= and substi- 
tuting the result into the first equation, we obtain 

( _or _ ot j (15) Op~ a2P~ = ~A p~ + ~ . (1 + s ) ~  + s~ 
Ot 2 

In this case the pressure i n  the fissures also satisfies such an equation. 

Equations (14) coincide in form with the partial variant of the equations of heat con- 
duction in a two-phase medium with nonzerQ thermal dlffuslvitlas in both phases correspond- 
ing to neglectlng convective heat transfer in the relative motion of the phases (see, e.g., 
[6]). In the case under examination the part of the mean phase temperatures is taken over 
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by the mean pressures in the fissures and blocks, and the relaxation terms do not describe 
the equalization of the phase temperatures by interphase heat exchange but the equalization 
of the mentioned pressures as a result of overflow from the porous blocks into the fissures. 
In the special case of ~ ffi 0, Eqs. (14) coincide with the equation of heat conduction in a 
disperse medium in which only heat conduction through the continuous phase is considerable. 
The last equations were investigated and solved for special cases by very many authors. If 
the characteristic time of change of temperature fields is much longer than the time of 
internal relaxation T, then it is permissible to examine instead of the system of equations 
of heat conductions by phases, the so-called "equivalent" equation for the temperature of 
the continuous phase; the methods of obtaining it and the conditions of its applicability 
were discussed in detail in [7] (see also [8]). 

These same methods may also be applied in the case under examination. If we express pffi 
from the second equation of (14) for ~ = 0 through p~ in general operator form and usa the 
formal expansion of the operator into a Taylor series, we obtain 

2 ?~ = 1 +  TO/Or p~ = ( - - l f ~ "  O~g'~"" (16)  
.=0 Or" 

This operator expansion is completely equivalent to the expansion of the ratio of the 
Laplace transforms px and pa, obtained from the second equation of (14) after its Laplace 
transform, by powers of the transformation variable which may be considered small when 
T/T<<1, where T is the characteristic time of change of the pressure fields. Different 
approximations correspond to the maintaining of a different number of first terms in the 
series of derivatives in (16). In the zeroth approximation px - Pa. In this case it is 
indispensable to neglect the derivative with respect to time in the first equation of (14), 
too, i.e., this approximation corresponds to the steady-state process of filtration. In 
the first approximation we obtain the parabolic equation 

(I + s) ap~, at = yap1, (17) 

describing the filtering throughflow of the liquid contained both in the fissures and in the 
blocks. It was shown in [7] that the approximation, affected by Eq. (17) for the initial 
system (14) or for Eq. (15), is unequally suitable at different points of the region of flow. 

�9 The subsequent, second approximation yields an equivalent equation containing the second 
derivative with respect to time and belonging to the elliptical type: 

(! + s) apl ~.._o~a~p__~ = (18) 
at at z yApl. 

The solutions of this equation bring the corresponding solutions of (14) or (15) 
closer together uniformly along the coordinates With T/T<<1 [7]. The equations of the sub- 
sequent approximations contain derivatives with respect to time of higher orders; their so- 
lutions may apparently be used for somewhat refining the solutlons of Eq. (18) but basically 
they do not introduce anything new. 

The condition that (18) be approximately correct lies in the requirement that T/T<<1. 
It is very probable that this same condition is also indispensable for the initial systems 
(13) and (14) to be correct. When relation (9) is written for the mass flow of liquid be- 
tween the examined continua with the time-lndependent coefficient a~ it is in fact admitted 
that the flow q is quasisteady. This also means precisely the implicit assumption that the 
characteristic time of substantial change of the pressures Pt and pa is much longer than the 
relaxation time T. It is therefore permissible to use the equivalent equation (18) instead 
of (14) or (15), apparently without loss of accuracy of the physical model of liquid motion 
in fissured and porous strata. 

For fissures materials (~ = 0) we have instead of (13) 

s O~, (_-~.V~) P~--~ (19) 
Ot = V ' , _ _ / '  ~ =  p O o  .. 

This type of equation was introduced repeatedly in the past in connection with the 
description of filtering processes of different nature [3, 5]. It is'clear that in this case 
motion is possible only in the range pt > o. 

For the steady-state process we obtain from (13) 
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I po_~ ?VPl =--• --,~ P1>~, 

Ap2=0, p~<~ 

The solutions of these equations on the boundaries p~ = o of regions with single-phase and 
two-phase throughflow have to satisfy the conditions of continuity of the full liquid flow 
and of pressure in porous blocks. 

In conclusion we want to point out that the rather great pressure drop at the bottom 
of boreholes (or galleries) in fissured and porous, and all the more so in fissured strata 
may have undesirable consequences in the operation of these boreholes. In fact, in this 
case there originates a region near the borehole in which fissure permeability greatly de- 
creases or vanishes altogether, i.e., a zone appears in which ~hroughflow is effected only 
via blocks wi~h low permeability. The natural local unloading of the stratum upon piping 
of the boreholes weakens this effect but in any case it may be expected that the yield of 
the borehole is not a monotonically decreasing function of the pressure at the bottom, as is 
the case with the ordinary type of stratum, but ~hat it attains a maximum at a fully deter- 
minate (fairly high in the case of deep-lying strata) value of this pressure. On the other 
hand, the substantially underestimated yields with specified borehole bottom pressure, and 
also the slower rates of restoring straum pressure when boreholes in fissured and fissure- 
porous strata are shut down compared with ordinary strata whose permeability and porosity 
depend only weakly on the state of stress and stratum pressure, all this may lead ~o con- 
siderable errors in estimatiBg the parameters of a stratum and the oil reserves it contains. 
In fact, if the standard methods of interpreting the curves of pressure recovery etc. are 
used, with which it is understood that the permeability of a stratum is practically con- 
stant, then the investigation data will formally correspond to a considerably reduced value 
of permeability compared with the real permeability of the stratum not disturbed by bore- 
holes. Obviously, the estimate of the oil reserves in this case will also be too low. To 
avoid such errors, it is indispensable in the interpretation of field tests to use the solu- 
tions of the equations of filtration which explicitly take into account the dependence of 
permeability both on the state of stress of the stratum and on the pressure in the fissures. 
This presupposes not only the investigation of such equations in situations that are of ap- 
plied interest but also, if possible, a more accurate determination of the coefficients of 
permeability contained in the equations. It follows from the theory of the present work that 
for this it is necessary to carry out in each actual case a thorough analysis of the s=ate 
of stress of the stratum and to have at least a minimum of information on the distribution 
of fissures according to orientation. We emphasize that in addition to the indicated cause 
of possible underestimation of oil reserves in fissured and porous strata there is also an- 
other cause: when the oil contained in porous blocks is not taken into account in very 
short-term surveys [3]. 

NOTATION 

c, radius of fissures; e~, unit vectors; E, modulus of elasticity of porous blocks; h, 
crack opening; k, tensor of permeability; k, permeability; Kp, ~, coefficients of compressi- 
bility determined in (i0); l, linear scale of porous blocks; m, porosity; n, unit vector of 
the normal to the plane of the fissure; p, pressure; q, mass flow density of the liquid from 
the blocks to the fissures; s, coefficient introduced in (12); T, time scale of the pressure 
field; t, time; u , filtration rate; ~, coefficient in (9); ~, tensor introduced in (12); g, 
Poisson ratio of porous blocks; ~, piezoconductivity; ~, viscosity; p, density; o, stress 
tensor; o, compressive stress; o f , first invariant of the tensor of fictitious stresses in 
porous blocks; T, relaxation time; ~, function in (19); subscripts I and 2, continua modeling 
a system of fissures and porous blocks, respectively; the degree sign refers to magnitudes 
determined for some reference value of the parameters. 
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MOTION OF A SPHERICAL CLOUD OF BUBBLES IN A LIQUID 

WITH MOTIONLESS PACKING 

V. V. Dil'man and V. L. Zelenko UDC 532.529 

On the basis of Darcy's linear law of resistance, the problem of the ascent of 
a spherical cloud of bubbles in an infinite liquid with a motionless solid 
phase is solved. The influence of inertia of the liquid on the character of 
cloud deformation is discussed. 

In investigating the structure of a real bubbling layer with packing under the action of 
various kinds of perturbation, it is of interest to determine both the distance to which the 
perturbation of the liquid velocity field excited by a finite region with increased gas content 
penetrates and the change in this region over time~ 

In the two-phase case, in the absence of packing, the problem of the collective inter- 
action of bubbles in a cloud was considered in [i], where macroscopic homogeneity of the 
cloud was assumed, with the consequence that the problem of large-scale liquid motion was 
not considered, but a new statistical model of the constrained motion of bubbles was pro- 
posed. The bubble cloud considered in the present work is macroscopically inhomogeneous, 
since the gas content is nonuniformly distributed over the llquid-filled space. Therefore, 
it is necessary to take account of large-scale motion in investigating the hydrodynamic in- 
teraction of the phases. In [2], the motion of a macroscopically inhomogeneous cloud of 
bubbles moving in viscous conditions was considered. The approximate Lamb--Tem method was 
used in [2]; in this method, in calculating the drag force of the i-th bubble, in the cloud, 
all the other drag forces are replaced by point forces, when numerical calculation of the 
combined motion of a few hundred bubbles is possible. However, in the presence of solid 
phase, no such simple and computationally expedient schematization is possible and, in addi- 
tion, the bubble motion is usually found to be inertial in character, in practice. On the 
other hand, if the number of bubbles is sufficiently large, their collective interaction 
reduces approximately to the interaction of an arbitrarily chosen bubble with the mean ve- 
locity field of the liquid arising as a result of the different buoyancies of the elements 
of the medium, which is uniquely related to the spatial distribution of the gas phase. This 
approximation may be described by the methods of the mechanics of multivelocity continua 
based on averaging theory [3]. However, methods of classical filtration theory, which is 
based on Darcy's linear filtration law, are sufficient for the elucidation of the character 
of phase motion [4, 5]. 

A system of phase-continuity and momentum equations is proposed for the description of 
the phase motion in a three-phase motionless layer; after simple transformations , the sys- 
tem takes the form 

Oq/Ot = div [(1 -- q) 7~], (1) 

aq/Ot +div  (qV--~) = O, (2) 

State Scientific-Research and Design Institute of the Nitrogen Industry and Products 
of Organic Synthesis, Moscow. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 46, No. 
4, pp. 600-605, April, 1984. Original article submitted November ii, 1982. 

434 0022-0841/84/4604-0434508.50 �9 1984 PlenumPublishing Corporation 


